
Requirements Definition

Getting to “What” and not “How”

2011 Montana Government IT

Conference

Agenda

1. The goal of requirements in systems development

2. Software development lifecycle considerations in requirements

definition

3. The benefits of “What” and not “How” in requirements definition

4. Tips and tricks of generating “what” and not “how” requirements

5. Questions and Answers

Why do we need requirements in systems

development?
 A Systems Development project is similar to a physical

construction project

Requirements

(What is needed)

Design

(How will it be realized)

Construction Project 3 bedrooms, 1.5 bathrooms, 2

car garage

Blueprints

Systems Development Project Automated Eligibility

Determination for SNAP and

TANF

Detailed System Design

Documents

The Goal of Requirements in Systems Development

 Business System Examples
 Airline booking

 Auto insurance quotes and sales

 Inventory management

 Medicaid claims processing

 Public assistance eligibility determination

 and issuance

 How are these different than software

companies like Google or Microsoft?

 This drives the need for requirements

The Business Nature of System Development Projects

 Overview of Common SDLC Methodologies
 Waterfall

 Iterative

 Agile/Scrum

 Considerations to Requirements definition

Software Development Lifecycle – Considerations with

Requirements

 Waterfall

The Software Development Lifecycle – Overview of

Methodologies

 Iterative

Overview of Methodologies - Continued

Overview of Methodologies - Continued

 Agile / Scrum

Methodology Key Features / Uniqueness Requirements Commonality

Waterfall

- Closely mimics the phases of the Software Development
Life Cycle (SDLC)

- Requirements Gathering in a Waterfall Model has
one-directional execution and needs to be completed
in whole before design and build phases can proceed.

- There are subtle differences across
methodologies ranging from # of iterations to
level of detail, but most of them need to
gather and document business
requirements in some way, shape or form
and pass them onto Build and Test teams for
implementation and verification. This provides
a significant opportunity for standardization
across methodologies.

-Methodologies like Agile are proactively
promoting the adoption use cases as the
primary form of requirements gathering
approach. Having use case hierarchies with
corresponding levels of detail complements Agile
practices.

- Most of the differences across these
methodologies are primarily around the
functional requirements. However, System
(including Non-Functional) requirements
gathering can follow one consistent approach
due to their static nature.

- Requirements Management is another
aspect which is independent of
methodologies used and needs to be addressed
for both functional and non-functional
requirements

- Requirements Gathering Standardization across
methodologies may be achieved either by
aligning processes or leveraging tools or a
combination of both.

Iterative

(RUP)

- Follow an iterative approach for the entire SDLC.

- Release-based methodology which enforces
requirements to be captured in increments and every
increment needs to complete it’s SDLC before the next
release/iteration commences.

- 3 to 4 iterations are typically recommended per release
in Agile methodology.

- Updates to requirements documents are frequent
based on the end user feedback after an iteration has
been built and deployed.

Agile

SCRUM - Follows a highly iterative model to complete a
largely fixed set of prioritized backlog of
requirements items in a series of short iterations called
sprints.

- From a requirements perspective, it promotes verbal
communication across all team members and across
all disciplines that are involved in the project A brief daily
meeting (called a scrum), at which progress is explained,
upcoming work is described, and obstacles are raised.

Overview of Methodologies – Requirements

Commonality

 Examples from every day life of “What” versus

“How”

What How

A ride to the airport at 1:00 PM A ride to the airport at 1:00 PM in a
black Cadillac Escalade driven by a man
wearing a tuxedo

Clean the kitchen floor Clean the kitchen floor using my
toothbrush and a spray bottle of
Windex. (Windex brand and not the
store or generic brand)

Communicate the project status at least
once weekly to the client management
team

Communicate the project status at least
once weekly to the client management
team while wearing a fur coat and
yelling the information

“What” versus “How” Requirements

 What was actually originally needed can get lost in the

prescription of how to accomplish that need

Pitfalls of “How” requirements

 It can be challenging to verify that

what was needed was accomplished

 The best possible approach may not

be identified considering a bigger

picture

 The requirements process may take

longer yet yield less than optimal

results

 Solution creativity may be limited with a prescribed

approach

 Best practices may be neglected without proper

consideration

 Ultimately, the overall solution may not be as

economical or efficient to support and maintain

 Testing may lose a valuable input of the true “What “

requirements to ensure business needs are fulfilled

“How” Requirements – A Software Vendor‟s Perspective

Additional

Testing:

Stress,

Regression,

Performance

Requirements

Definition

High Level Business

Requirements

Detailed Functional

& System

Requirements

Detailed

Technical

Design

Build

(Coding/Defect-Fixing)

Unit

Testing

Integration & System

Testing

User Acceptance

Testing

Operation / Maintenance

Unit Test

Specifications

Sys./Intg. Test

Specifications

UAT Test

Specifications

D
e

v
e

lo
p

m
e
n
t

D
e
s
ig

n

R
e
q
u

ir
e

m
e
n

ts
 A

n
a

ly
s
is

Process

Improvement

Properly defined Requirements Provide a Valuable

Input to Testing

 Conducting Requirements sessions

 Documenting the Requirements

 Validating/Reviewing “What” not “How”

requirements

Tips and Tricks for Generating “What” and not “How”

requirements

 Open with some examples of “What” not “How”
requirements

 Provide relevant examples of “What” requirements
translated to effective “How” designs

 Encourage participants to place their focus on defining
“What” is the business need rather than how it will
behave

 Tools:
 Capture “How” ideas as design notes, however, not as the

actual requirements

 Explain the “parking lot” and know when to use it

 Document action items well and follow up

Tips on Conducting Requirements Sessions

 Be physically and mentally present (phone conference is not recommended)

 Please … Be on time (to sessions, to individual meetings)

 Be open, direct and focused on the issues under discussion

 Listen first, THEN ask questions. Respect everyone’s input and feedback

 Be constructive and creative – discuss ideas, present an alternative

 No lectures please; be concise, be respectful of everyone’s time

 Speak up when you have a question or an alternative to offer, otherwise quietly
signal your agreement

 No laptops and mobile phones, please (if you don’t need to pay attention, you
probably don’t need to be there)

 Breaks are breaks

 Insist every person wear a name tag (indicating the representative’s business unit)

 “Because we have always done it that way” is NOT acceptable rationale for process
and/or requirements.

Conducting Requirements Sessions – Typical „Rules of

the Road‟

Process Process Process

Focus on driving towards the ideal level of detail while writing the

description of a requirement.

Too Broad Too Specific Ideal

Without specifics and process
context, level of effort cannot be
estimated within a reasonable range

Example Requirement: “Notifications shall
be based on a set of business defined
criteria.”

Ideal requirements provide enough
detail as well as context of a
process

Example Requirement: “If an
entitlement can not be verified for an
SAS account, the system shall send a
notification to both the Entitlement
Group and the SAS Account Group.”

Requirements that are too specific state
an implementation approach rather
than the requirement and/or does not
include the necessary detail to
implement

Example Requirement: “Ability to flag/pop-up
a notification in red, bold text when
entitlements can’t be viewed for SAS.”

Process

Process Process

Process Process

Process

Process

Process

Process

Process

Process

Process

Process

Process

Tips on Documenting Requirements

 Keep the following items in mind when documenting requirements

 Remember to include, not only the “What” but also:

 Who/Whom

 When

 How Often

 Requirements should focus on ”What” not “How”

 E.g., describe what functionality is needed, not how it should work

 Remember that functionality may be delivered in more than one way

 Don’t lock onto a specific design by writing requirements that focus on the specifics of

how a system should behave

 This is not a design session but a foundation for design

 Build requirements as a function of business process, not individual function points.

Staying process-focused helps everyone understand how the system will function

when deployed

 Properly consider channels and their differences when developing processes and

gathering requirements

Tips on Validating “What” not “How” Requirements -

Continued

• Wil Carroll, Principal Deloitte Consulting
– wcarroll@deloitte.com

• Kenny Smith, Senior Manager Deloitte Consulting, PMP
– kensmith@deloitte.com

• Deloitte Consulting Helena Montana Office
– Suite 301, 350 N Last Chance Gulch, Helena, MT 59601

How to Contact US

mailto:wcarroll@deloitte.com
mailto:kensmith@deloitte.com

